Approximation by rational functions in hardy space
نویسندگان
چکیده
منابع مشابه
Approximation by Rational Functions
Making use of the Hardy-Littlewood maximal function, we give a new proof of the following theorem of Pekarski: If f' is in L log L on a finite interval, then f can be approximated in the uniform norm by rational functions of degree n to an error 0(1/n) on that interval. It is well known that approximation by rational functions of degree n can produce a dramatically smaller error than that for p...
متن کاملApproximation by Rational Functions in
The denseness of rational functions with prescribed poles in the Hardy space and disk algebra is considered. Notations. C complex plane D unit disk fz : jzj < 1g Tunit circle fz : jzj = 1g H p Hardy space of analytic functions on D kfk 1 := supfjf(z)j : z 2 D g, the H 1 norm A(D) disk algebra of functions analytic on D and continuous on D P n set of polynomials of degree at most n
متن کاملConstrained Hardy space approximation
We consider the problem of minimizing the distance ‖f − φ‖Lp(K), where K is a subset of the complex unit circle ∂D and φ ∈ C(K), subject to the constraint that f lies in the Hardy space H(D) and |f | ≤ g for some positive function g. This problem occurs in the context of filter design for causal LTI systems. We show that the optimization problem has a unique solution, which satisfies an extrema...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2000
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(00)00147-4